
Real-Time Adaptive Scalable Texture
Compression for the Web
Master’s thesis in Computer Science and Engineering

DANIEL OOM

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden 2016

Real-Time Adaptive Scalable Texture Compression for the Web
DANIEL OOM

c© DANIEL OOM, 2016

Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Göteborg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
An example picture that have been encoded and decoded using the presented algorithm, showing some of the
encoding error.

Göteborg, Sweden 2016

Real-Time Adaptive Scalable Texture Compression for the Web
Master’s thesis in Computer Science and Engineering
DANIEL OOM
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract

This thesis investigates using Adaptive Scalable Texture Compression in real-time to improve memory utilization
in web browsers. A fast encoding method that uses heuristics and avoids the commonly used branch and bound
method is presented. Performance benchmarks and quality comparisons against other commonly used encoders
show that it is possible to compress textures with reasonable quality in real-time.

Keywords: Web Browser, Texture Compression, Real-time, Adaptive Scalable Texture Compression, Heuristics

i

Abstract

Detta examensarbetet undersöker användandet av texturkomprimering i realtid för att förbättra minnesanvändan-
det i webbläsare. En snabb metod baserad p̊a heuristik som undviker den mer vanligen använda “branch
and bound”-metoden. Prestandamätningar och kvalitetsjämförelser gentemot andra populära texturkom-
primeringsprogram visar att det är praktiskt möjligt att komprimera texturer i realtid med rimlig kvalitet.

Acknowledgements

Special thanks to Christian Kinndal, for mentoring at Opera Software; Erik Sintorn, for helping me keep on
track as my supervisor at Chalmers; and Ulf Assarsson, for agreeing to be my examiner. I also thank my
girlfriend, Ingrid, for supporting me whenever my motivation was waning.

ii

Contents

Abstract i

Abstract ii

Acknowledgements ii

Contents iii

1 Introduction 1
1.1 Background . 1
1.2 Problem . 1
1.3 Limitations . 2

2 Previous Work 3
2.1 Texture Compression Formats . 3
2.2 Encoders and Performance . 3

3 Texture Compression 5
3.1 Color Theory . 5
3.2 Texture Mapping . 5
3.3 Compressing Textures . 6
3.3.1 Fixed Rate and Block Division . 6
3.3.2 Block Definitions . 6
3.4 Adaptive Scalable Texture Compression . 9
3.4.1 Block sizing . 9
3.4.2 Block encoding . 9
3.4.3 Endpoint Modes . 10
3.4.4 Partitions . 10
3.4.5 Dual Planes . 11
3.4.6 Bounded Integer Sequence Encoding . 11
3.5 Encoding Algorithms . 12
3.5.1 Dominant Axis . 12
3.5.2 Selecting Endpoints and Interpolation Weights . 12
3.5.3 Partitioning . 13

4 Implementation 14
4.1 Algorithm Pseudocode . 14
4.1.1 Fixed Block Size . 14
4.1.2 Heuristics . 15
4.1.3 Endpoint Selection . 15
4.1.4 Weight Selection . 16
4.1.5 Partitioning . 16
4.1.6 Quantization . 18
4.1.7 Bounded Integer Sequence Encoding . 18

5 Results 19
5.1 Comparison with Formats and Encoders . 19
5.2 Quality Comparisons . 19
5.2.1 Peak Signal-to-Noise Ratio . 20
5.2.2 Results . 20
5.3 Performance Benchmarks . 23
5.3.1 Hardware . 23
5.3.2 Compiler . 23
5.3.3 Results . 24

iii

5.4 Problematic Blocks . 26

6 Discussion 28
6.1 Quality Evaluation . 28
6.2 Performance . 28
6.3 Unused ASTC features . 28
6.4 Power Method . 28
6.5 Partitioning . 28
6.6 Using another format . 29

7 Conclusion 31

References 32

iv

1 Introduction

1.1 Background

Over the years 2010 to 2016, the resolution of hand-held devices increased significantly. For example, the
resolution of Samsung Galaxy S up to Samsung Galaxy S6 is shown in figure 1.1, similar advancement can be
observed for most other mobile devices as well. This increase in pixel count causes a significant increase in
memory usage for buffered screen rendering. Storing a buffer using a 32-bit RGBA format requires four bytes
per pixel, for a Quad HD display with 2560× 1440 ≈ 4 million pixels that means a single full-screen buffer
requires almost 15 megabytes of memory. Depending on how much render buffering an application uses, this
can add up to a significant amount of the total memory usage.

Figure 1.1: Samsung Galaxy device resolution

2010 2011 2012 2013 2014 2015

1

2

3

4

Year

P
ix

el
C

o
u
n
t

(m
il
li
on

s)

Any web browser based on the rendering engine in Chromium uses a significant amount of memory for render
buffers due to how web page rendering is implemented. The rendering engine in Chromium is designed to
handle everything from the simplest piece of black text on white background to very complex websites. This
means that rendering can be very expensive depending on what content is being displayed. To support smooth
scrolling, among other things, the browser divides the web site (including non-visible parts) into parts referred
to as tiles. Thus, tiles that are already rendered do not have to be rendered again if the page is scrolled by the
user. Also, when the page is scrolled it is beneficial if the tiles that are scrolled into view are pre-rendered so
that they appear instantly to the user and not after a delay due to rendering. However, buffering the tiles can
require a significant amount of memory.

Opera Software ASA who develops several Chromium based products, among them Opera for Android,
have made attempts at optimizing the memory used for tiles by using compression. Compression helps directly
with the memory usage as the data is stored with fewer bytes, but it comes with its own set of problems. For
example the previous work by Opera has problems related to quality due to the use of lossy compression and
performance problem due to the design of the used compression formats. The purpose of this project is to
continue Opera’s previous work and evaluate to what extent it is feasible to compress the buffered tiles in
real-time to save memory.

1.2 Problem

For compression to be usable in the browser it must not compromise the user experience. Thus, no human
noticeable loss in quality is tolerated and the performance must be high enough such that there is almost no
noticeable delay before displaying a page compared to using no compression. This poses a challenge since data
compression in general is a computationally expensive problem. Another problem is that the web contains
most of all conceivable types of graphics such as: text, gradients, solid colors, sharp and soft edges, chromatic
variance, transparency, low frequency and high frequency. Since image compression relies on being able to

1

represent repeating patterns with fewer bits, it is difficult to maintain both high compression ratio and high
quality for all possible patterns.

1.3 Limitations

To limit the scope of this project, one compression method have been selected, namely texture compression.
The reason for using texture compression is that texture compression designed for high performance graphics
applications and could thus provide the rendering performance we require. Further, only one texture compression
format is going to be examined in detail, namely the Adaptive Scalable Texture Compression (ASTC) format
developed by ARM [EN12]. Though, the many similarities between texture compression formats allows for
conclusions to be drawn about issues with the other formats as well. An encoder will be implemented and the
focus will be on reasonable quality and very high performance.

ASTC was selected because it is a newer format that have taken the ideas from previous texture compression
formats and improved upon them. Thus, it should provide the most useful features for the varied types of
images that this project is targeting. To decide what is constituted as good enough compression quality is
a thesis in itself and thus for this project we will simply state that the reference encoder for ASTC provides
sufficient quality when run in its fastest compression mode. As for performance, the encoder needs to be fast
enough to compress the image with no noticeable delay for the user. That means that the delay should ideally
not be more than a few tenths of a second for compressing all visible tiles for a web page. Non-visible tiles can
take more time as long as they are not immediately needed.

2

2 Previous Work

This section presents the research and texture compression formats that Adaptive Scalable Texture Compression
builds on. Additionally, previous work on fast encoding of different texture compression formats is also
presented.

2.1 Texture Compression Formats

The first block based image compression method was Block Truncation Coding (BTC), presented by Delp
and Mitchell [DM79]. BTC compresses single channel images by splitting them up into fixed size blocks and
compressing each block independently. Texture compression is not discussed directly here but virtually all
texture compression formats use the proposed block based compression scheme.

Campbell et al. [Cam+86] discuss compressing color images by using BTC on each color channel indepen-
dently. They also introduce Color Cell Compression (CCC), which uses a color map scheme with lower bit-rate
than channel independent BTC. Using CCC for texture mapping was introduced by Knittel et al. [Kni+96],
where they present a hardware rasterizer that renders textures directly from the compressed state. Beers et al.
present a compression method based on vector quantization together with another hardware rasterizer [BAC96].
Both vector quantization and the palette methods requires additional memory lookups during the decoding
stage, incurring hardware complexity and lower performance.

S3 Texture Compression (S3TC) was introduced by Iourcha et al. [INH99]. They introduced the endpoint
interpolation method which does not require extra memory lookups in the decoder. Additionally, S3TC also
supports color images with and without an alpha channel. Thanks to inclusion in DirectX and OpenGL, S3TC
has been very popular in computer graphics applications. S3TC is a set of five different formats (in DirectX
referred to as DXTC). The first format (DXT1) encodes images with three color channels while the other
four formats extends DXT1 with different methods for encoding an alpha channel. POOMA, presented by
Akenine-Möller and Ström [AS03], uses the ideas from S3TC but changes the format to suit the hardware
architecture they designed.

Akenine-Möller and Ström presented another texture compression format, PACKMAN, which uses an
entirely different luminance modulation based scheme [SA04]. They also presented iPACKMAN [SA05] which
improves encoding of blocks with small, continuous chromatic changes. In iPACKMAN, a new differential
coding is introduced that can be used instead of the direct coding from PACKMAN, and the coding can
be chosen on a per-block basis. Later, iPACKMAN was also referred to as Ericsson Texture Compression
(ETC). Blocks containing several distinct chromatic values are not encoded well by iPACKMAN. Pettersson
and Ström presented a new format, THUMB, which introduces a method that can encode such blocks [PS05].
However, THUMB is a separate texture compression format and does not work well for the kind of blocks
where iPACKMAN excels. With Ericsson Texture Compression 2 (ETC2), Ström and Pettersson presented an
encoding where iPACKMAN or THUMB can be chosen on a per block basis [SP07]. Based on the ordering
technique, first used in S3TC and later named by Munkberg et al. [MAS06], ETC2 uses invalid bit sequences
to encode more options without requiring more bits.

Microsoft renamed the DXTC formats in Direct3D 10 to Block Compression (BC). For Direct3D 11 Microsoft
developed two new formats, BC6H and BC7 [Mic09]. These formats are based on the endpoint interpolation
method from S3TC, together with the introduction of partitioning and support for high dynamic range textures.
Partitioning is another solution for the problem solved by THUMB, where the texels of a block is divided
into sets and each set is encoded with its own pair of endpoints. This allows encoding blocks where colors are
distributed in distinct clusters with differing extents. NVIDIA also developed an OpenGL extension for BC6H
and BC7 [ARB11].

Finally, the most recent established texture compression format is Adaptive Scalable Texture Compression,
presented by Nystad in 2011 [Nys+12]. This new format builds on S3TC, ETC2, BC6H and BC7 while
introducing high configurability allowing to choose between higher compression ratio or better visual quality.

2.2 Encoders and Performance

At the same time as the texture compression formats have grown in complexity, the encoding processes have
suffered in performance. Many encoders for the S3TC formats exists [Cas10; AMD08; Bro06b], but most of

3

them are designed for offline usage and are thus not usable for real-time texture compression. Waveren [Wav06]
have researched real-time S3TC compression on the CPU side and Castaño has worked on real-time GPU
encoding [Cas07]. Waveren and Castaño also presented a real-time S3TC compressor that uses a different
color space [WC07]. Even more extreme S3TC encoding performance have been presented by Peter Uličiansky
[Uli10]. For the newer texture compression formats Krajcevski, Lake and Manocha [KLM13] have presented a
fast encoding algorithm that can do partitioning. Krajcevski and Manocha also developed a fast partitioning
method using a full image segmentation preprocessing stage [KM14].

4

3 Texture Compression

This chapter introduces the theory behind texture compression. We will begin with a section introducing color
theory and texture mapping, which is then followed by an overview of the ideas used in texture compression.
Following that is a detailed description of the Adaptive Scalable Texture Compression format. Finally, the last
section describes different algorithms and methods used in texture compression.

3.1 Color Theory

To understand the intrinsics of texture compression we need to understand what colors are and how they can
be represented in a computer. The definition of color is derived from how the human visual system interprets
the part of the electromagnetic spectrum that humans can see. A color model mathematically describes how
to construct colors. Color models are usually defined using tuples of numbers with three or four components.
Further, a color space is defined by describing how a color model is interpreted by the human visual system.

One of the most commonly used color spaces in computer graphics is the RGB color space. The design of
RGB is based on human vision. Human vision uses three light receptors that detects different parts of the
electromagnetic spectrum. Each receptor roughly corresponds to red, green and blue light. RGB is designed for
light transmitters such as computer screens. Three emitters are used, each targeting one receptor in the human
vision system, constructing colors in an additive fashion. The three components of RGB are thus red, green
and blue.

Since the colors are described with three components, the color space can be interpreted as a volume in
three dimensional euclidean space. This allows the use of mathematical concepts applying to euclidean spaces,
such as linear algebra, something that is extensively used in all texture compression formats.

3.2 Texture Mapping

Surface textures are images used in computer graphics to add detail to graphic objects, a method referred to as
texture mapping. Originally texture mapping only added color to surfaces through color mapping, as shown in
figure 3.1. However, today textures are used for graphical features such as geometrical displacement of surfaces,
shadows and reflections [AHH08]. Texture mapping is done by assigning a two-dimensional coordinate, referred
to as a texture coordinate, to every vertex in a model. Coordinates between vertices are interpolated and then
the screen pixel is calculated from the texture pixels (texels) using texture filtering. Texture filtering describes
a method to find the color from one or more texels as the rendered pixels belonging to the textured surface
may not match with the texture image pixels.

(a) A sphere without textures. (b) The same sphere with color mapping.

Figure 3.1: Example of color mapping making a sphere look like the earth. Earth map image from the Visible
Earth project by NASA.

5

The amount of memory available to the graphics processor is the factor that limits the amount of textures
that can be used. Higher-resolution textures allows more detail to be added but also uses more memory. The
amount of detail graphics applications can add through textures is thus limited by the amount of available
memory. For color mapping with raster images, the textures can be stored in RGB format where each channel
is described by one byte. This means that a 1024 by 1024 texture would use around three megabytes of
memory. That may not seem like much, but considering that modern graphics applications may use thousands
of textures, available memory is easily exhausted. This is the motivation behind the development and usage of
texture compression.

3.3 Compressing Textures

Texture compression methods is a subset of image compression methods that can be used to make each texture
occupy less memory, thus enabling the usage of more and higher-resolution textures. Many texture compression
formats, with different features, have been developed and all of them share the following four properties:

1. Fast decoding

2. Random access

3. High visual quality

4. Slow encoding

Firstly, fast decoding, or more specifically the possibility to implement a decoder in hardware with few
components, is essential. Fast hardware decoders allow texture decompression to happen in real-time as part
of the rendering pipeline. This means that the textures never have to be stored uncompressed, which saves
bandwidth between the memory and the processor. Additionally, sending compressed data can actually increase
performance when bandwidth is the bottleneck since more texture data can be sent simultaneously. Secondly,
random access is required as the GPU is inherently parallel and the order in which the texture will be accessed
is random. Thirdly, high visual quality is also very important as compression artifacts may negatively impact
the visual experience of the graphical application. Finally, as texures are mainly created at development time
of the application, there is sufficient processor time available which allows the compression to take much longer
time than the decompression.

3.3.1 Fixed Rate and Block Division

To create an encoding scheme that accommodates the four parameters described above, we start with dividing
the image into a grid of equally sized blocks and then encoding each block independently with a fixed number
of bits. Then for each block, two pieces of information needs to be encoded: color spaces and color specifiers.
Each pixel is through a color specifier tied to a point in one of the chosen color spaces.

This encoding satisfies the random access property because locating the block which a specific pixel belongs
to can be done with just algebra and only one block needs to be decompressed to find the color of one specific
pixel. To satisfy the third property it is assumed that pixels close to each other in coordinate space are also
related in color space, which enables visual quality to be maintained even for high compression ratio. The first
property is satisfied by making sure few operations are needed to go from the encoded data to the decoded
pixels. Finally, the fourth property is an unfortunate consequence that stems from the underlying computational
problem the encoder has to solve. Choosing the color spaces and color specifiers such that the resulting error of
encoding and decoding is as small as possible turns out to be very difficult.

3.3.2 Block Definitions

A few different definitions for the color spaces and the color specifiers have been presented. This section explains
a few of the ideas behind the definitions.

6

Quantization

Since each block is encoded with a fixed number of bits, it is not always possible to encode values with the
same number of bits as they are represented with in the input. Thus, the original values needs to be mapped
to representations using fewer bits, this process is called quantization. Representation with fewer bits is just an
example of quantization, which in more general terms means to constrain one set of values to another set with
fewer values. Quantization is the source of compression error, as information is by definition lost during the
process. Another mathematical example is quantizing the set of real numbers to the set of integers through the
use of rounding.

For texture compression there are two quantization processes employed. The first process is color quantization,
which maps a set of input colors to colors in a smaller set of output colors, often referred to as a palette. Each
color value in the original set is mapped to a color in the palette with an index. The palette has to be chosen
such that the representation of indexes for the original colors together with the palette itself is smaller than the
original representation of colors, otherwise the data size is increased. The second process is integer quantization
where integers represented with specific number of bits are quantized to fewer bits. This is used whenever the
values that are to be encoded are represented with more bits than are available in the encoded format.

Endpoint Interpolation

A common color quantization method used to describe blocks is endpoint interpolation. It was made popular
by the S3TC texture compression format. With endpoint interpolation blocks are encoded by storing two
endpoint colors in a chosen color space together with interpolation weights for all texels. When decoding,
the texel weights are used to linearly interpolate between the two endpoints. An example representation of
endpoints and weights in a two dimensional red and blue color space is shown in figure 3.2, working with RGB
or RGBA is analogous. When the colors of a block are distributed along a line, which for example is the case
with gradients and one dimensional color spaces, this method gives good results. However, when the colors are
spread out, which is more likely the larger the blocks are, compression artifacts are introduced.

R

B

0/5

1/5

2/5

3/5

4/5

5/5

(a) One pair of endpoints in RB-space.

0/5 1/5 1/5 2/5

1/5 1/5 2/5 3/5

1/5 2/5 3/5 4/5

2/5 3/5 4/5 5/5

(b) Texel weights for a 4× 4 block.

Figure 3.2: Representation of endpoints and weights.

Partitions

To handle cases where the colors in a block is not distributed along a line, some formats supports what is
referred to as partitioning of each block. For blocks where partitioning is enabled the texels are divided in up
to two or more sets, referred to as partitions. A specific set of partitions for a block can be referred to as a
partitioning, shape, or pattern. Each partition is encoded using its own pair of endpoints and each weight is
encoded with respect to which partition it belongs to. Additionally, a value describing which partition each
texel belongs to is also stored together with the block. Figure 3.3 shows an example encoding of a 4× 4 block
with two partitions.

Luminance Modulation

Another color quantization method for encoding a block is to store a base color and then for each texel store a
luminance modifier. This is the method introduced by the PACKMAN format, later extended by iPACKMAN,
THUMB, and ETC2. PACKMAN only considers RGB textures and uses 2× 4 sized blocks. For each block

7

R

B 0/3 1/3 2/3 3/3

0/3

1/3

2/3

3/3

(a) Two endpoint pairs in RB-space.

1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0

(b) Partitioning mask.

0/3 1/3 2/3 3/3

0/3 1/3 2/3 3/3

0/3 1/3 2/3 3/3

0/3 1/3 2/3 3/3

(c) Texel weights.

Figure 3.3: Representation of endpoints, weights and partitioning for two partitions.

a base color is stored with four bits per channel (RGB444). For each texel a two bit index into a luminance
modulation table is stored. In total 32 bits are used per block, leaving four bits that selects between different
modulation tables. The tables are derived from real image data. This method works well when the color points
only vary along the luminance axis. If there is chromatic variance in the block it is impossible to represent it
well with this format.

Redundant and Invalid Combinations

To maximize the use of the available bits, several techniques have been used in different formats. For example,
the encoding order of a pair of endpoints does not matter, the list of interpolation weights can simply be
reversed. Thus, the order of the encoded endpoints can be chosen such that the first is smaller than the second
or the other way around. When decoding, comparison of the endpoints gives an additional bit which can be
defined as a configuration option. This was first used in S3TC but later named the ordering technique by
Munkberg et al [MAS06].

An different but similar technique was introduced in ETC2 which is based on invalidation rather than
redundancy [SP07]. When many configuration options are added to a format, certain combinations of these
options can be considered as invalid in that they can not be decoded in any meaningful way. Thus, the
bit sequences that represent invalid combinations can be re-defined and given some new and meaningful
interpretation, essentially using the available bits more efficiently.

8

3.4 Adaptive Scalable Texture Compression

Adaptive Scalable Texture Compression is a texture format developed by ARM and was first presented in
2012[Nys+12]. ASTC builds on the ideas introduced by previous texture compression formats while also
introducing a few new ideas. Configurability is the main benefit of ASTC, offering a trade off between high
visual quality and high compression ratio.

3.4.1 Block sizing

ASTC allows choosing the block size on a per texture basis and also supports both 2D textures and 3D textures.
Regardless of the chosen block size, the blocks are always encoded with 128 bits. Thus, choosing a larger block
size results in a lower bit rate, that is, fewer bits used per pixel. For video game textures this offers the ability
to control compression ratio and visual quality on a per texture basis. The available 2D block sizes are listed in
table 3.1 and a similar table is available for 3D blocks in the ASTC specification[EN12].

Block size (pixels) Bit rate (bits per pixel) Compression ratio
4× 4 8.00 25.00%
5× 4 6.40 20.00%
5× 5 5.12 16.00%
6× 5 4.27 13.33%
6× 6 3.56 11.11%
8× 5 3.20 10.00%
8× 6 2.67 8.33%
10× 5 2.56 8.00%
10× 6 2.13 6.67%
8× 8 2.00 6.25%
10× 8 1.60 5.00%
10× 10 1.28 4.00%
12× 10 1.07 3.33%
12× 12 0.89 2.78%

Table 3.1: Block sizes with corresponding bit rates and compression ratios.

3.4.2 Block encoding

ASTC uses the endpoint interpolation method for encoding. The big difference compared to previous usage of
endpoint interpolation is that ASTC allows configuring the number of interpolation points and the encoding of
color endpoints on a per block basis. Since different blocks benefit from different encoding schemes, allowing to
chose the scheme for every block makes it possible to encode with better quality.

Since the number of encoded endpoint values and interpolation points may vary the bit layout of a ASTC
block is not trivial. The bits are divided into three categories: configuration bits, endpoint bits and weight
bits; and each category may vary in size. The endpoint values and weight values are quantized to fit within
the available bits. The bit layout is shown in figure 3.4 and the configuration bits always start at the least
significant bit and grows towards the most significant bit. The endpoint bits follows after the configuration
bits and grow in the same direction. Weight bits instead start at the most significant bit and are stored
in bit-reversed order, growing towards the least significant bit. The layout is designed to make it easier to
construct a hardware decoder, which is easier when the different categories starts at known positions.

0123456789101112131415

LSBMSB

Configuration bitsEndpoint bitsWeight bits

Figure 3.4: ASTC bit layout for encoded block

9

3.4.3 Endpoint Modes

The color spaces have differing component count, thus they require different number of values for the encoded
endpoints. For example, for the luminance color space (L), only one component is used and thus only two
values are needed for the encoded representation. For RGB there is three channels and thus six encoded values
are needed for two endpoints. This enables grey scale blocks to be encoded with higher quality than color
blocks, as there are more bits available per endpoint value for the luminance mode, compared to the RGB
mode.

Further, ASTC provides three different methods for encoding the two endpoint values. The first is the direct
encoding where the two endpoints are encoded independently. The second encoding is a differential encoding
where the first endpoint is encoded directly while, the second endpoint is encoded using an offset value (as
presented in [SA05]). Thus, the second endpoint is decoded by adding the first endpoint together with the
offset. This improves accuracy when two endpoints are close together as quantization otherwise may result
in that the endpoints are encoded as the same color in direct mode. The third encoding is a multiplicative
encoding which is similar to the differential encoding but uses a scale value instead of an offset value. To decode
the second endpoint, the first endpoint is multiplied by the scale value. This is useful when the endpoints vary
only along the luminance axis.

Dynamic Range Color Space Encoding Method
1 LDR L Direct
2 LDR L Differential
3 HDR L Large range
4 HDR L Small range
5 LDR LA Direct
6 LDR LA Differential
7 LDR RGB Multiplicative
8 HDR RGB Multiplicative
9 LDR RGB Direct

10 LDR RGB Differential
11 LDR RGB Multiplicative plus two alpha
12 HDR RGB Direct
13 LDR RGBA Direct
14 LDR RGBA Differential
15 HDR RGBA Direct, LDR alpha
16 HDR RGBA Direct, HDR alpha

Table 3.2: ASTC endpoint modes. L refers to the luminance color space and LA refers to luminance with alpha.

3.4.4 Partitions

ASTC also supports partitioning as introduced by BC6H and BC7 [Mic09]. In the BC formats each block is
encoded according to a specific mode and the mode determines if the block is encoded with partitioning or not.
For partitioned blocks a six bit value is used to select one of 64 pre-determined partitions. The partitionings
are hard-coded as a lookup table and used both in the encoder and the decoder to tell which partition each
texel belongs to.

In ASTC, partitioning is implemented in a slightly different fashion. Firstly, ASTC supports up to four
partitions and two configuration bits are used in each block to tell the number of partitions used for that block.
Secondly, for each partition count there are 1024 possible partitionings chosen by a ten bit index. Having 1024
partitionings hard-coded in a lookup table would be expensive in a hardware implementation, as it would take
up a significant part of the physical size of the circuit. To overcome this problem, the partitionings are actually
computed on the fly using a pseudo-random number generator (PRNG). A specialized generator have been
developed for this purpose that is much simpler to construct in hardware than a large look-up table. The trick
is to seed the PRNG by the partition count, the partition index, and the texel coordinate within the block.
This ensures that the same result is given for each run of the generator, essentially using it as a replacement for
a look-up table. The returned value is a number telling which partition the texel belongs to. The generator is
designed to give good partitionings and also facilitate hardware implementation.

10

3.4.5 Dual Planes

Dual plane mode allows encoding one color channel independently from the other channels. This enables better
visual quality when one channel has low correlation with the other channels, which can happen with for example
alpha channels or in non-color textures. The second plane is encoded with an additional weight for every texel
which during interpolation is used for the chosen channel.

3.4.6 Bounded Integer Sequence Encoding

ASTC also uses an integer sequence compression trick to further optimize the usage of available bits. With
binary encoding the number of values m that can be encoded with n bits is 2n. However, if m is less than 2n

but more than 2n−1, using binary encoding means that more values can be represented than necessary. In
theory, the lower bound of the number of bits is n = log2 m. Bounded Integer Sequence Encoding (BISE)
introduces two additional encodings, trinary and quintary, that for longer sequences of numbers can approach
the theoretical limit for more values of m than regular binary encoding.

Trinary encoding groups integers in groups of five and splits each number into a two-bit trinary value, t, and
a binary number b. The trit, t, is taken from the most significant bits and b is the remaining bits. Figure 3.5
shows an example grouping of the 5-bit numbers v0 to v4. The trits t0 to t4 in the original binary encoding
requires ten bits. Since they are trinary and can only take on three different values, they can together only
represent 35 = 243 values and thus it is possible to encode them in a binary number with only eight bits.
The trits are packed into an eight-bit number and are, together with b0 to b4, representable with only 23 bits
compared to the original 25 bits. Effectively, the number of bits per trit becomes 8

5 = 1.6 which is less than the
original two bits.

0123456789101112131415161718192021222324

v0

b0t0

v1

b1t1

v2

b2t2

v3

b3t3

v4

b4t4

Figure 3.5: Trinary encoding of 5-bit numbers

Quintary encoding works analogously to trinary, the difference being that the sequence is divided into
groups of three numbers and the three most significant bits are treated as a quint, that is a number that can
take on five values. Three quints can represent 53 = 125 values and can thus be encoded with only seven bits.
The effective number of bits per quint thus becomes 7

3 = 2.33 which is less than the original three bits.
Figure 3.6 shows the storage efficiency, that is the ratio of the number of requested values to the number

of possible values, of binary encoding and BISE. It shows that BISE is optimal two times in between every
optimal binary encoding and the worst case is improved significantly.

Figure 3.6: Efficiency of storage

5 10 15 20 25 30 35 40 45 50 55 60

80

90

100

Values

E
ffi

ci
en

cy
(%

)

Optimal
BISE

Binary

11

3.5 Encoding Algorithms

Encoding a given input image to a specific texture compression format can be seen as an optimization problem
where the optimal solution is the encoded configuration which when decoded as closely as possible matches the
input image. In the specific instance of endpoint interpolation formats, it is possible to formulate the encoding
as an integer programming problem, which is a specific class of optimization problems. We will refer to this as
the endpoint optimization problem. Integer programming problems are expressed as a set of integer variables
that should be optimized with respect to some specified constraints. It has been shown that the endpoint
optimization problem is NP-hard [KLM13]. Thus, it is impossible to write an encoder that gives an optimal
solution and an approximate method will have to be used instead.

The most commonly used approximations for endpoint interpolation formats will be described in the rest of
this section.

3.5.1 Dominant Axis

The first step is to find a dominant axis and then search for endpoints along that axis. This significantly
simplifies the search space as we only have to consider points along a line rather than in the entire three
dimensional color space. Note that since there always are at least one pair of endpoints that is optimal there is
also an axis passing through one of those pairs. There are several methods for finding a dominant axis.

Bounding Box

Waveren presents several methods aimed for performance [Wav06]. The first and quality-wise best method is
finding the two color points furthest away from each other with respect to euclidean distance and taking the
line between them as dominant axis. This requires that the distance is calculated between all points making
it a quadratic algorithm but with quite good quality. Waveren suggests comparing the distance along the
luminance axis only for a speed up with some loss in quality. The second and now more commonly used method
is to compute the bounding box for the color points, that is the component-wise minimum and maximum, and
taking its diagonal as dominant axis. Computing the bounding box is linear in time complexity as we only
have to compute the minimum and maximum for each color channel. The problem with the bounding-box
method is that the loss in quality is high since the bounding box diagonal does not necessarily correlate with
the actual distribution of points sometimes giving entirely wrong results.

Principal Component Analysis

Another method for determining a dominant axis is Principal Component Analysis (PCA). PCA is a statistical
method for finding patterns in data with any dimension and is thus suitable for use with 3-dimensional RGB
or 4-dimensional RGBA data. Compared to the bounding box computation PCA is much more complicated.
Firstly, the input data has to be normalized such that the mean is zero. Secondly, the covariance matrix is
computed for the normalized data. Thirdly, the last step is to compute the eigenvectors for the covariance
matrix. The eigenvectors describe the data points’ distribution and if they are orthogonalized and normalized
the data points can be described as linear combinations of the eigenvectors. The eigenvector with the largest
absolute eigenvalue (also referred to as first eigenvector) points in the direction of a best fit line. Together with
the mean value the first eigenvector can be used to describe a dominant axis.

There is an iterative numerical method for determining the first eigenvector, namely the power method. The
power method calculates the first eigenvector for a matrix, A. The algorithm is initialized with an initial vector
x0, each iteration is given by equation 3.1.

x̂n =
Axn−1

||Axn−1||
(3.1)

The algorithm is usually run until the result does not change more than a predetermined epsilon value. For
some matrices the power method converges slowly and it does not work at all when the data is uniform.

3.5.2 Selecting Endpoints and Interpolation Weights

Once a dominant axis has been established the endpoints are searched for along this axis. There are several
methods for finding a good solution with trade-offs between speed and quality.

12

The simplest method for selecting endpoints is to project the color points onto the axis and select the
minimum and maximum projections as endpoints. Interpolation weights are then selected by calculating the
distance from each texel color point to every interpolated color and the weight giving the shortest distance
is chosen. For extra speed the weights can be selected by rounding the projected scale value directly to the
nearest quantized weight value, as presented by Uličiansky [Uli10]. This avoids costly comparison between all
possible interpolation points but is not mathematically correct and introduces additional compression errors.

Simon Brown introduces a method referred to as cluster fit [Bro06a] that reverses the range fit procedure,
that is, cluster fit starts with a set of interpolation points and then searches for the optimal pair of endpoints.
This is done by finding all possible clusterings of the color points that respects the points’ ordering along the
dominant axis. Then the least squares method is used to compute the endpoints for each of these

Once a pair of endpoints and a set of interpolations have been chosen the encoding is mostly finished, what
is left is quantization to the ranges used in storage and putting the bits together. Some encoders may add an
additional optimization step that conducts a local search around the selected endpoints to see if they can be
improved, of course at the cost of performance.

3.5.3 Partitioning

For the formats that supports partitioning, the best pattern needs to be selected as well, which requires solving
another problem. The partitioning optimization problem is a generalization of the endpoint optimization problem.
Instead of optimizing for one pair of endpoints, several pairs of endpoints needs to be found which is much more
difficult. One solution is to perform the endpoint selection algorithm for each possible partitioning, compute
the compression error and chose the pattern with the lowest error. Exhaustively searching all partitions gives
the optimal solution but can be very slow, especially for formats such as ASTC that has many partitionings. A
faster method is suggested in [Nys+12] which first computes a clustering using the k-means vector quantization
algorithm. Each texel is labeled based on the clustering and the resulting pattern is ranked against the available
patterns. The available partitions are then searched in order, starting with the best match and the algorithm
can exit if the previous partitioning was better.

In [KLM13] it is suggested to use Waveren’s bounding box method on each partition instead of doing full
principal component analysis. This simplifies and speeds-up the check for each partition and thus may allow
checking all partitions. Another completely different method was also presented in a later paper that suggest
running an edge-detection algorithm as a pre-processing stage. The partitions are then selected based on the
detected edges, or rather the areas in between the edges [KM14].

13

4 Implementation

In this chapter, a real-time algorithm, henceforth referred to as astcrt, for encoding ASTC is presented. The
implementation is first outlined in pesudocode and then each part of the encoder is explained using more
pseudocode, focusing on the used algorithms rather than the technical details of the implementation. This
encoder relies on heuristics and tries to avoid computing results that will be unused later, unlike many of the
encoders built previuosly. This means that many of ASTC’s features are unused due to the difficulty of finding
good heuristics.

4.1 Algorithm Pseudocode

The pseudocode for the encoding of a single block is shown in figure 4.1 and described in detail in the following
sections. The encode-block function is called on each block independently and returns an encoded ASTC
block.

function encode-block(texels)
if is-solid(texels) then

return encode-void-extent(texels)
else if is-grey(texels) then

endpoints ← find-extremes(texels)
weights ← compute-weights(endpoints, texels)
return encode-luminance(endpoints, weights)

end if
axis ← principal-component-analysis(texels)
if should-partition(axis, texels) then

clustering ← k-means(texels)
bitmask ← find-partitioning(clustering)
if bitmask 6= 0 then

set1 ← texels where bitmask = 0
set2 ← texels where bitmask = 1
axis1 ← principal-component-analysis(set1)
axis2 ← principal-component-analysis(set2)
endpoints1 ← find-extremes(axis1, set1)
endpoints2 ← find-extremes(axis2, set2)
weights1 ← compute-weights(endpoints1, set1)
weights2 ← compute-weights(endpoints2, set2)
return encode-partitions(endpoints1, weights1, endpoints2, weights2)

end if
end if
endpoints ← find-extremes(axis, texels)
weights ← compute-weights(endpoints, texels)
return encode-rgb(endpoints, weights)

end function

Figure 4.1: Real-Time algorithm pseudo code.

4.1.1 Fixed Block Size

The first decision for the encoder was which block size should be used. Using the reference encoder [ARM15] a
set of web page renders where investigated. The encoder has support for different performance modes ranging
from very fast to exhaustive. The very fast mode does very little searching in the configuration space and
encodes images quickly while exhaustive mode searches as much of the configuration space as is computationally
viable. The exhaustive mode reaches a quality that is as close to the optimal encoding as possible. Thus, if
the exhaustive mode does not provide adequate quality it would not be possible to achieve better quality in
real-time.

14

It was concluded that using the exhaustive quality option for block sizes larger than 4× 4 did not produce
adequate results quality-wise. Thus, it was decided to only use 4× 4 blocks in the real-time encoder. As for
performance, the fastest mode was considered quick enough such that a specialized encoder would provide
significantly better performance than the reference encoder.

4.1.2 Heuristics

The algorithm starts with testing two performance-related heuristics. The first, is-solid, picks out blocks that
constist of entirely one color. For such blocks, ASTC has the special void extent mode which can be encoded
without any expensive computations making this code-path very fast. This provides an important optimization
as solid colors are commonly used on the web, for example in margins around text or as filler. The function is
implemented by comparing each color with the first color, returning false if any of them differ.

The second heuristic, is-grey, handles blocks where the red, green and blue channels are equal. This is
also an important optimization since the problem of finding endpoints becomes one dimensional and we can
use the fast minimum and maximum method without loosing much quality. The interpolation weights still
has to be computed with respect to the selected endpoints which requires an additional loop over the texels.
Greyscale is also common in the web even though black text on white background is not entirely greyscale
due to the use of tricks to improve rendering with respect to how computer displays works. The function is
implemented by testing the channels of each texel for equality.

4.1.3 Endpoint Selection

The principal-component-analysis and find-extremes functions are responsible for selecting the endpoints.
Endpoint selection is done using the Principal Component Analysis method as shown in figure 4.2. The
eigenvector is computed using the power method with eight iterations as suggested by Castaño [Cas07].

function principal-component-analysis(texels)
mean ← mean color value of texels
A ← mean subtracted from texels
B ← covariance matrix of A
return (mean, power-method(B))

end function
function power-method(B)

k ← normalization of (1, 3, 2)
repeat 8 times do

k ← B multiplied by v and then normalized
end repeat
return k

end function

Figure 4.2: Principal Component Analysis pseudo code.

The color points are projected onto to the principal axis with scalar projections. Then the minimum and
maximum projections are taken as endpoints, which is shown in figure 4.3.

function find-extremes(axis, texels)
a←∞
b← −∞
for each texel in texels do

projection ← texel projected onto axis
a← min(a, projection)
b← max(b, projection)

end for
return (point a on axis, point b on axis)

end function

Figure 4.3: Endpoint selection pseudo code.

15

4.1.4 Weight Selection

The compute-weights function calculates the interpolation weights for the texels given an endpoint pair.
This is done using vector projection, the vector from the first endpoint to each texel is projected onto the line
going through both endpoints. Given the texel color c and the endpoints e0 and e1, let k = e1 − e0 and m = e0.
Thus the line starting in m with direction k goes through both endpoints and if we project the vector from
m to c onto k we get the parameter for the point on the line closest to the texel color. That value is then
extended to the range [0, 1024] and rounded, this computation is shown equation 4.1 where the resulting value
is named w.

w =

⌊
(c−m) · k
|k|

× 1024

⌋
(4.1)

The value w is then used as index into a look-up table with the optimal quantized weight values based on
euclidean distance.

4.1.5 Partitioning

The partitioning algorithm is made up of the following three steps:

1. Deciding if partitioning should be used or not.

2. Computing an ideal clustering of the texels.

3. Finding a good partitioning that matches the ideal clustering.

The following sections describes each of these steps in more detail.

Determining Partitioning Viability

The first part of the partitioning algorithm decides if it is worth to attempt it, which is done with a heuristic
approach implemented by should-partition. The heuristic is based on the fact that if many texels are far
away from the principal axis, the encoding error is going to become large. Thus the euclidean distance can be
computed from each color point to the principal axis and if enough of the distances are large enough we use
partitioning. These conditions were determined empirically to be:

• A texel is far away if distance is larger than ten.

• A block should be partitioned if three or more texels are far away.

These chosen values are at the point where increasing or decreasing either constant would decrease the overall
compression quality. Figure 4.4 shows pseudo code for the partitioning decision heuristic.

function should-partition(texels, endpoints)
count← 0
for each texel in texels do

p← texel projected onto line between endpoints
if distance from p to texels > 10 then

count← count + 1
end if

end for
if count ≥ 3 then

return true
else

return false
end if

end function

Figure 4.4: Partitioning heuristic pseudo code.

16

Computing a Clustering

The second part of the partitioning algorithm is computing an ideal clustering from the texels. This is done
using the k-means clustering algorithm, also referred to as Lloyd’s algorithm, for two clusters. The k-means
algorithm starts with one initial center point for each cluster and then in an iterative fashion it assigns each data
point to its closest cluster center and then recomputes the cluster centers by taking the average of each clusters
assigned data points. For usage in the partitioning algorithm it was empirically determined that starting with
the two color points farthest away from each other and then iterating only four times gave an usable result.

function k-means(texels)
centers← the two points in texels furthest apart
repeat 4 times do

clusters← two empty clusterings
for each texel in texels do

d1 ← distance from texel to centers1
d2 ← distance from texel to centers2
if d1 < d2 then

add texel to clusters1
else

add texel to clusters2
end if

end for
centers1 ← mean of texels in clusters1
centers2 ← mean of texels in clusters2

end repeat
return clusters

end function

Figure 4.5: k-means clustering pseudo code.

Finding a Partitioning

To avoid having to search 1024 partition entries, a pre-computed look-up table is used. The table maps every
possible partitioning for a 4× 4 block, that is 24×4 = 216 entries, to the available partitioning with the smallest
edit distance. The edit distance is defined as the number of pixels in the two partitionings that are different.
Additionally, the inverted partitioning is also considered and the smallest edit distance is chosen. Partitionings
with a large edit distance is not considered as they likely would not improve the result anyway. If there are
several available partitionings with a minimum edit distance, only one of them is selected in no particular order.

Figure 4.6: All available 2-set partitionings for 4× 4 blocks.

17

4.1.6 Quantization

Quantization from color values and weight values to their respective storage ranges is done using lookup
tables. Tables are again generated by implementing the unquantization steps as described in the ASTC
specification [EN12] and then using brute force to reverse the tables.

4.1.7 Bounded Integer Sequence Encoding

The BISE implementation uses a table based method as suggested in the ASTC specification. A decoding
table is computed as specified in the ASTC specification [EN12] that maps the packed trit and quint values to
unpacked trits and quints. Encoding look-up tables that maps the unpacked trits and quints to the packed
representation are computed via brute force.

18

5 Results

This section presents the quality comparisons and performance benchmarks that have been conducted to
confirm that astcrt fulfills the goals of good-enough quality at high performance. The first part compares
astcrt with other established formats and encoders while the second part presents examples of when astcrt

works and when problems may arise.

5.1 Comparison with Formats and Encoders

This section outlines the performance and quality of the astcrt encoder in comparison with other established
formats and encoders. A few popular encoders that supported the used testing platform was selected and are
presented in table 5.1.

Encoder Version Source
astcenc v1.3 github.com/arm-software/astc-encoder

fastc commit 319b293 github.com/mokosha/fastc

etcpack v4.0.1 malideveloper.arm.com

etcpak v0.4 bitbucket.org/wolfpld/etcpak

Table 5.1: Tested encoders

The first encoder, astcenc, is the reference encoder for ASTC. It is developed by ARM and allows control
over quality and encoding performance. Settings are mainly available through five modes: veryfast, fast,
medium, thorough, and exhaustive. The modes control the performance versus quality trade off with veryfast

providing the highest performance but lowest quality, and exhaustive providing the highest quality but the
lowest performance.

The second encoder, fastc, is an implementation of the algorithm presented in [KLM13] for BC6H and
BC7. This encoder aims to be very fast without sacrificing quality. Additionally, it provides control over an
endpoint refinement process and have been tested with and without the refinement.

The third encoder, etcpack, supports both ETC1 and ETC2 while providing both fast and slow modes for
lower and higher quality encoding, but here only the slow mode have been tested. It is developed by ARM and
distributed as part of the Mali Texture Compression Tools.

The fourth and last encoder, etcpak, is a extremely fast encoder for ETC1 that disregards quality and only
focuses on high encoding performance.

Additionally a set of test images is needed and traditionally when it comes to image compression (and
texture compression) the Kodak image set [Kod] is used for comparison. The Kodak image set is suitable for
comparisons due to its high quality and variety in image features.

Given these encoders and the differences in compression formats, the hypothesis is that astcrt will have
better quality than the best ETC1 encoder. This is because the ETC1 format is fundamentally flawed since it
can not represent several chromatic values in the same block. However, ETC2 together with ASTC and BPTC
are similar in that they provide representations for more than one chromatic value per block. The best encoder
for each format should thus outperform the real-time encoder quality-wise. For run-time performance it is
expected that the astcrt provides a competitive speed for the resulting compression quality. Other encoders
may be faster, but if they are faster they will most likely provide worse quality. For example etcpak is designed
to be very fast but it is limited by the quality constraints of ETC1. Also, any S3TC encoder that implements
Waveren’s fastest methods [Wav06] would be faster than astcrt, but the quality would be worse because of
the shortcomings of the bounding box method.

5.2 Quality Comparisons

This section presents how astcrt performs quality-wise with respect to other formats and encoders. First
the numerical method used for measuring encoding error is presented. That is then followed by the measured
results and a few excerpts of the encoded images.

19

github.com/arm-software/astc-encoder
github.com/mokosha/fastc
malideveloper.arm.com
bitbucket.org/wolfpld/etcpak

5.2.1 Peak Signal-to-Noise Ratio

The metric that have been used is Peak Signal-to-Noise Ratio (PSNR). PSNR refers to the ratio between the
maximum power of a signal and the power of the noise that affects the signal. For images, the signal is the
sequence of pixels and the maximum power is the largest value we can represent, which in the case of RGB is
the color white. The noise is measured as the mean squared error (MSE) of all pixels in the image. The squared
error is the same as the squared euclidean distance between each original pixel and the corresponding encoded
pixels. Given two pixels p and q, the euclidean distance is given in equation 5.1. Then, given two m× n RGB
images A and B, the MSE is computed as shown in equation 5.2. Finally, the equation for computing the
PSNR of the two images are given in equation 5.3.

d(p, q) =
√

(pr − qr)2 + (pg − qg)2 + (pb − qb)2 (5.1)

MSE(A,B) =
1

mn

m∑
i=1

n∑
j=1

d(Aij , Bij)
2 (5.2)

PSNR(A,B) = 10 · log10

(
3× 2552

MSE(A,B)

)
(5.3)

Some of the tested encoders does compute and present a PSNR value. However, as astcrt does not support an
alpha channel, care has been taken to ensure that the RGB PSNR value is used in these comparisons, and not
the RGBA PSNR value. The RGBA PSNR is slightly higher than the RGB PSNR when the alpha channels
are equal since there are four components instead of three in equation 5.3. Thus, to ensure consistent results,
the astcenc program’s comparison function have been used for all PSNR computations which gives the RGB
PSNR.

5.2.2 Results

The data is presented in figure 5.1 as a line graph although no linear relationship is present for the images used.
It is simply easier to read compared to the more obvious choice of a bar graph. Additionally a few excerpts
of the encoded images are shown in figure 5.2 for visual comparison. From the graph we can see that the
presented encoder is better than the ETC1 encoder but slightly worse than the fastest mode of the ASTC
encoder. Additionally, the encoding method presented by Krajcevski et al [KLM13] gives very good quality
and competes with the best ASTC encoder mode. In theory, the ETC2 results should be closer to the results
of ASTC and BPTC as it also supports encoding multiple chromatic values. This is probably a problem with
the encoder used, but no better encoded was found.

20

ko
d

im
01

ko
d

im
02

ko
d

im
03

ko
d

im
04

ko
d

im
05

ko
d

im
06

ko
d

im
07

ko
d

im
08

ko
d

im
09

ko
d

im
10

ko
d

im
11

ko
d

im
12

ko
d

im
13

ko
d

im
14

ko
d

im
15

ko
d

im
16

ko
d

im
17

ko
d

im
18

ko
d

im
19

ko
d

im
20

ko
d

im
21

ko
d

im
22

ko
d

im
23

ko
d

im
2
4

35

40

45

Image

P
S

N
R

(d
B

)

astcenc thorough fastc refined fastc
astcenc veryfast astcrt partition astcrt

etcpack etc2 etcpack etc1 etcpak

Figure 5.1: PSNR for the Kodak image set.

21

kodim03 astcenc thorough astcrt astcrt partition

kodim05 astcenc thorough astcrt astcrt partition

kodim17 astcenc thorough astcrt astcrt partition

kodim20 astcenc thorough astcrt astcrt partition

kodim23 astcenc thorough astcrt astcrt partition

Figure 5.2: Encoded excerpts of the Kodak image set.

22

5.3 Performance Benchmarks

To compare the performance of different encoders, their compression rate is measured. The compression rate is
calculated by measuring the time it takes to compress an image and then dividing the pixel count with the
measured compression time as in equation 5.4.

Compression rate =
Pixel count

Compression time
(5.4)

For fair comparisons, all encoders have been benchmarked in single-threaded mode as the implementation of
astcrt is not parallelized. Further, when the encoder is implemented in the browser, there is virtually no
initialization as the encoder is directly fed the correct input format. Thus, we are only interested in measuring
the running time of the encoding algorithms and will avoid counting reading the input file, writing the output
and other setup costs. All tested encoders provided the option to print a run time measurement, it is assumed
that this measurement excludes the setup time and is thus used in these experiments. Also, each encoder is
benchmarked by first running it a few times to warm up the process scheduler and all caches. Then, 50 samples
are taken of the compression time and the average is computed to account for any variations that may occur.
Note that some of the encoders were sampled only once as they were very slow, taking up to a minute per
image. Since we are interested in real-time performance, accurate measurement of encoders that take a minute
or more is not necessary.

5.3.1 Hardware

Three hardware platforms have been benchmarked as shown in table 5.2. Both smart phones are from the
high-end segment and were chosen to give an upper limit on performance of today. The laptop was included to
compare how hardware have improved in general over the years from 2011 to 2015. Both phones are running
Android and the laptop is running Linux.

Laptop Phone 1 Phone 2
Vendor Asus Google Samsung
Model U46-SV Nexus 5X Galaxy S6
Year 2011 2015 2015
Processor Intel i5-2410M Snapdragon 808 Exynos 7 Octa 7420
Max Clock 2.9 GHz 1.8 GHz 2.1 GHz

Table 5.2: Benchmarked hardware

5.3.2 Compiler

It is important that the encoder is built by the same compiler and with the same compiler flags to generate
comparable binaries. Thus, since no source code could be found for etcpack, only astcenc, etcpak, fastc,
and astcrt have been benchmarked. For benchmarking on the laptop, version 5.3 of the GNU Compiler
Collection was used with the following flags:

-O3 -march=native -DNDEBUG

The compiler was run on the laptop itself which ensures that the best optimization options for that specific
processor is used.

On android, the choice of compiler is more limited as the Android Native Development Kit (NDK) must
be used for compiling for the android platform. The Android NDK shipped with GNU Compiler Collection
version 4.9 and two different builds were made. The first build is targets version 7 of the ARM architecture
with the following flags:

-O3 -march=armv7-a

The second build enables optimizations for the NEON instruction set, which provides specialized instructions
for working with multiple data values at the same time as a form of parallelism. This form of parallelism is
called Single Instruction Multiple Data, or SIMD for short. To enable NEON, two flags are added:

23

-O3 -march=armv7-a -mfpu=neon -mfloat-abi=softfp

The -mfpu flag tells the compiler to enable NEON and the -mfloat-abi flag also enables the usage of hardware
floating point instructions.

Since none of the other encoders have been designed to be compiled with the Android NDK, it would take
some work to run them on Android. Thus only the presented astcrt encoder have been benchmarked on
Android.

5.3.3 Results

The benchmark results for the Kodak image set is shown in table 5.3 and also on a logarithmic scale in
figure 5.3. This data shows that both modes of astcrt and also etcpak are several orders of magnitude faster
than astcenc and fastc. It also shows that etcpak is about three times faster than the partitioning mode of
astcrt. This is in-line with the expectation that etcpak would be the faster of the two encoders.

Encoder Samples Rate (pixels/second)

astcrt 50 2.42× 107

astcrt partition 50 1.77× 107

astcenc thorough 1 6.88× 103

astcenc veryfast 50 3.69× 105

etcpak 50 6.62× 107

fastc refined 1 5.44× 103

fastc 50 3.48× 104

Table 5.3: Benchmark results for Intel laptop.

as
tc
rt

as
tc
rt

pa
rt
it
io
n

as
tc
en
c
th
or
ou
gh

as
tc
en
c
ve
ry
fa
st

et
cp
ak

fa
st
c
re
fi
ne
d

fa
st
c

104

105

106

107

108

Encoder

R
at

e
(P

ix
el

s/
S
ec

on
d
)

Figure 5.3: Laptop benchmark compression rate on a logarithmic scale.

The android benchmarks are also interesting and are shown in table 5.4 and figure 5.4. We can see that
NEON and hardware floating point instructions improves the performance a lot, making the encoding almost
four times faster. Also, a compression rate of 137 megapixels per second can be considered very good. For
perspective, with 137 megapixels per second it would take (on average) 15 milliseconds to encode a Full HD
image, which is fast enough to not be noticeable by a user.

24

Encoder NEON Rate (pixels/second)

astcrt No 3.33× 107

astcrt Yes 1.65× 108

astcrt partition No 2.23× 107

astcrt partition Yes 1.37× 108

(a) Benchmark results for Google Nexus 5X.

Encoder NEON Rate (pixels/second)

astcrt No 3.87× 107

astcrt Yes 2.04× 108

astcrt partition No 2.57× 107

astcrt partition Yes 1.68× 108

(b) Benchmark results for Samsung Galaxy S6.

Table 5.4: Android benchmarks results.

as
tc
rt

as
tc
rt

N
EO

N

as
tc
rt

pa
rt
it
io
n

as
tc
rt

pa
rt
it
io
n

N
EO

N

0.5

1

1.5

2

·108

Encoder

R
at

e
(P

ix
el

s/
S

ec
o
n

d
)

Google Nexus 5X
Samsung Galaxy S6

Figure 5.4: Graph of android bench marks (linear scale).

25

5.4 Problematic Blocks

While PSNR can help us gauge how astcrt performs in comparison to other encoders, it is still only a
comparisons of averages. If a single block has a very large error in an image with an otherwise low average
error, it is easy for a human viewer to spot the bad block. Though, the PSNR will not be affected much, if at
all, since the average error is still low. For this reason, even though the partitioning improves the PSNR only
slightly, it may be large improvement in quality for a human viewer. To illustrate the improvement partitioning
brings, a few blocks have been chosen and are presented together with their compressed version. The example
blocks can be seen in figure 5.5.

Block 1 astcrt astcrt partition astcenc exhaustive

Block 2 astcrt astcrt partition astcenc exhaustive

Block 3 astcrt astcrt partition astcenc exhaustive

Block 4 astcrt astcrt partition astcenc exhaustive

Figure 5.5: Example blocks where partitioning improves the encoding error.

It is obvious that partitioning helps for the first three blocks and that astcenc, as expected, gives the best
results in all cases. For the fourth block, it is difficult to spot the difference because of the low contrast. What
has happened is that astcrt has encoded the original gradient as a solid color, which most likely happens due
to quantization. The original block is quantized into a range that represents the slightly different shades of
orange with the same shade of orange. It may seem like a small problem but if you put the block into the
image context, as in figure 5.6, it is much easier to spot the compression artifacts.

26

(a) Original image

(b) astcrt partition

(c) astcenc exhaustive

Figure 5.6: Block 4 context.

27

6 Discussion

In this section the presented results and the presented implementation are discussed in the context of real-time
texture compression.

6.1 Quality Evaluation

Computationally evaluating the quality of compressed images is difficult. In addition to what is noted in the
results, PSNR is only an approximation of human perception of encoding errors. For instance, a block with low
compression error may look worse than a block with high compression error. The fourth example in figure 5.5
has a small error since there is only a small amount of variation among the original colors. However, it is still
possible to spot the compression artifacts in the image. But for blocks in very noisy images, high compression
error could be present without any easily spotted artifacts. This is because noise introduced by compression
can be indistinguishable from the original noise in the image. It would have been interesting to use a more
modern image comparison methods such as Multiscale Structural Similarity [WSB03] to see if the results would
be different. This was unfortunately not done due to time constraints.

Also, when it comes to visual quality, an important consideration is that for displays with higher pixel
density, compression artifacts are more difficult to discern. This is because each visual feature (for example a
character symbol) will be smaller in visual size and thus it is harder to see small differences. A second reason
is that with higher pixel density, visual features are usually rendered over a larger pixel area to maintain
their visual size. This is important to for example make text large enough to be readable. In turn, this
means that more blocks will have higher color correlation between their pixel and thus compress better with
endpoint interpolation. But that could also mean that it might be possible to use a larger block size for a lower
compression ratio.

6.2 Performance

While the performance of astcrt when optimized for NEON is very good, the common consensus is that hand
optimization still beats compiler optimizations. Thus, performance could possibly be improved further. Also, it
would have been interesting to compare astcrt with Intel’s SIMD optimized texture compressor[Int15]. Since
it was only distributed for Windows, testing it on a Linux machine was not possible.

6.3 Unused ASTC features

Many of the available features in ASTC are unused by astcrt. This is due to not having enough time to
implement and test good heuristics for the those features. For example, the fourth block in figure 5.5 may
benefit from the use of the differential endpoint encoding mode. It would also have been interesting to see how
using additional modes would affect the overall quality and performance.

6.4 Power Method

Since the power method is only run eight times, and not to the point of convergence, this is a source of error. It
would be interesting to investigate how much this source of error contributes to the overall result. Also, when
the algorithm does not converge, the choice of initial vector matters. Different initial vectors could be tested on
real images, such as the Kodak image set used in the results, and the vector giving the smallest error could be
chosen.

6.5 Partitioning

The proposed partition selection method actually improves quality. However, it is not perfect and a few
improvements could be investigated. Firstly, the usage of k-means does not optimize the two endpoint pairs,
only the distance from each point to the clusters’ centers. Thus, the resulting partitions computed from the

28

clustering may not be the best with respect to endpoint interpolation. One example is blocks with four or more
distinct chromatic values. What could happen is that one cluster is created for one of the chromatic values,
and then the other three is lumped together in the second cluster. Thus, the endpoint interpolation has to
cover three chromatic values in that case. The ideal solution for this case would be to put two chromatic values
in each cluster. Modifying the k-means algorithm to find better partitionings in the general case, or using a
different clustering algorithm, could be investigated for better compression quality.

Secondly, the scoring method used for computing the look-up table is not ideal. Since the edit distance
is primitive, partitionings containing widely different texels are considered equal. Figure 6.1 shows three
example partitioning masks. The first is considered the ideal partitioning and the other two are the available
partitionings. Both of the available partitionings only have a single difference from the ideal partitioning,
meaning that they have the same edit distance and are considered equal by the partitioning choosing heuristic.
However, the chosen partitioning can give very different results depending on the block. Test encoding of the
found partitionings is an obvious way to mitigate this problem but would be very costly performance-wise.
Another fix could be to change the distance metric such that each cell of each partitions is geometrically close
to the other cells of that partition. That would mean that eventual compression errors are gathered together
which may look better.

1 1 0 0

1 1 0 0

1 1 0 0

1 1 0 0

(a) Ideal partitioning

1 1 0 0

1 1 0 0

1 1 0 0

1 1 1 0

(b) Available partitioning

1 1 0 1

1 1 0 0

1 1 0 0

1 1 0 0

(c) Available partitioning

Figure 6.1: Example partitioning masks.

Thirdly, the endpoints are computed from the actual chosen partitioning rather than the ideal computed
partitioning. It could be possible to get better results by using the k-means clustering to compute the endpoints,
and then use the actual partitioning only for texel weight computation. If we assume that the k-means clustering
represents a good partitioning, introducing color points from a different part of the block to the endpoint
computation stage will skew the result. Thus, using the ideal clustering instead would avoid the skew. However,
the encoded color for the additional texel will come from an endpoint pair which it did not contribute to,
meaning that it might stand out among its surrounding pixels. That may look worse than a slight skew of all
colors in the partitions.

Fourthly, a general limitation is that this method is only feasible for two partitions and smaller block sizes.
For 4× 4 blocks with two partitions the table becomes 128 kibibytes in size which in general can be considered
small. If the block size is increased to 6× 6 the table becomes 128 gibibytes instead, which is too large for the
general purpose computers today. Three partitions would also mean that the table becomes large, around 82
mebibytes. Thus, using a pre-computed look-up table for other than 4× 4 blocks can be viewed as intractable.

6.6 Using another format

ASTC, BPTC, and ETC2 have in their publications shown that they are capable of encoding with high enough
PSNR. Given the similarities between ASTC and BPTC, it should be possible to implement an encoder that is
as fast as astcrt for BPTC as well. ETC2 is different enough to mandate a different encoding method.

Another consideration for the format is the flexibility of ASTC. This flexibility is not easy to utilize
efficiently as previously explained. Even if astcrt were to be improved to utilize more of ASTC’s features,
many configurations would still be unused. For instance, it would suffice to use only one bit to indicate that
there are one or two partitions in the block, rather than two bits. Another example is the configuration bits
used to state how many interpolation weights there are in the block, that number is always fixed to sixteen in
astcrt. There are many more examples and this essentially means that bits are wasted. These bits could have
been used to increase the accuracy of the encoded endpoints and weights. Thus, a specialized format could be
created with only the necessary configuration options, allowing more bits to be used for specifying endpoint

29

colors and weight values. This is something that may happen in the future as improving memory utilization
and battery usage is very important for hand held devices.

30

7 Conclusion

Going back to the problem presented in the introduction: saving memory by compressing what the web
browser renders. Using texture compression enables significant memory savings at the cost of processor time for
encoding, and also quality loss due to the lossy nature of the encoding. It has been shown that the presented
ASTC encoder almost provides quality as good as the fastest mode of the reference encoder, and at a much
higher compression rate. While the quality is not as good as the targeted reference encoder, a few possible
improvements have been suggested which may bring the quality closer to the goal and eliminate any significant
compression artifacts. The performance benchmarks also shows that the compiler is good at utilizing the
NEON instruction set for the given workload, and that the presented encoder can be applicable for real-time
usage. Unfortunately, the low-end hardware that actually need the memory savings the most may be too slow
for real-time texture compression. While the choice of hardware may matter, it is still an interesting result for
future research and development of using compression to decrease the amount of memory used for image data
in general.

31

References

[AHH08] T. Akenine-Möller, E. Haines, and N. Hoffman. Real-time rendering. CRC Press, 2008.
[AMD08] AMD. The Compressonator. 2008. url: http://developer.amd.com/tools-and-sdks/archive/

legacy-cpu-gpu-tools/the-compressonator.
[ARB11] O. A.R.B. ARB texture compression bptc. 2011. url: https://www.opengl.org/registry/

specs/ARB/texture_compression_bptc.txt.
[ARM15] ARM. ASTC-encoder. 2015. url: https://github.com/ARM-software/astc-encoder.
[AS03] T. Akenine-Möller and J. Ström. “Graphics for the masses: a hardware rasterization architecture for

mobile phones”. In: ACM Transactions on Graphics (TOG). Vol. 22. 3. ACM. 2003, pp. 801–808.
[BAC96] A. C. Beers, M. Agrawala, and N. Chaddha. “Rendering from compressed textures”. In: Proceedings

of the 23rd annual conference on Computer graphics and interactive techniques. ACM. 1996,
pp. 373–378.

[Bro06a] S. Brown. DXT Compression Techniques. 2006. url: http://www.sjbrown.co.uk/2006/01/19/
dxt-compression-techniques.

[Bro06b] S. Brown. libsquish. 2006. url: https://code.google.com/p/libsquish.
[Cam+86] G. Campbell et al. “Two bit/pixel full color encoding”. In: ACM SIGGRAPH Computer Graphics.

Vol. 20. 4. ACM. 1986, pp. 215–223.
[Cas07] I. Castaño. “High quality dxt compression using cuda”. In: NVIDIA Developer Network (2007).
[Cas10] I. Castaño. NVIDIA Texture Tools. 2010. url: http://code.google.com/p/nvidia-texture-

tools.
[DM79] E. J. Delp and O. R. Mitchell. “Image compression using block truncation coding”. In: Communi-

cations, IEEE Transactions on 27.9 (1979), pp. 1335–1342.
[EN12] S. Ellis and J. Nystad. ASTC Specification. 1.0. ARM Ltd. July 2012. url: https://github.com/

ARM-software/astc-encoder/raw/5d545016573317fefd6cebd77694d6123cd82b94/Documentation/

ASTC%20Specification%201.0.pdf.
[INH99] K. I. Iourcha, K. S. Nayak, and Z. Hong. System and method for fixed-rate block-based image

compression with inferred pixel values. US Patent 5,956,431. Sept. 1999.
[Int15] Intel. Fast ISPC Texture Compressor. 2015. url: https://software.intel.com/en- us/

articles/fast-ispc-texture-compressor-update.
[KLM13] P. Krajcevski, A. Lake, and D. Manocha. “FasTC: accelerated fixed-rate texture encoding”. In:

Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. ACM.
2013, pp. 137–144.

[KM14] P. Krajcevski and D. Manocha. “SegTC: Fast Texture Compression using Image Segmentation”.
In: Eurographics Association, Lyon, France, I. Wald and J. Ragan-Kelley, Eds (2014), pp. 71–77.

[Kni+96] G. Knittel et al. “Hardware for superior texture performance”. In: Computers & Graphics 20.4
(1996), pp. 475–481.

[Kod] Kodak. Kodak lossless true color image set. url: http://r0k.us/graphics/kodak.
[MAS06] J. Munkberg, T. Akenine-Möller, and J. Ström. “High quality normal map compression”. In:

SIGGRAPH/EUROGRAPHICS Conference On Graphics Hardware: Proceedings of the 21 st ACM
SIGGRAPH/Eurographics symposium on Graphics hardware: Vienna, Austria. Vol. 3. 04. 2006,
pp. 95–102.

[Mic09] Microsoft. Texture Block Compression in Direct3D 11. 2009. url: https://msdn.microsoft.com/
en-us/library/windows/desktop/hh308955(v=vs.85).aspx.

[Nys+12] J. Nystad et al. “Adaptive scalable texture compression”. In: Proceedings of the Fourth ACM
SIGGRAPH/Eurographics conference on High-Performance Graphics. Eurographics Association.
2012, pp. 105–114.

[PS05] M. Pettersson and J. Ström. “Texture Compression: THUMB—Two Hues Using Modified Bright-
ness”. In: Proceedings of Sigrad, Lund (2005), pp. 7–12.

[SA04] J. Ström and T. Akenine-Möller. “PACKMAN: texture compression for mobile phones”. In: ACM
SIGGRAPH 2004 Sketches. ACM. 2004, p. 66.

[SA05] J. Ström and T. Akenine-Möller. “iPACKMAN: High-quality, low-complexity texture compression
for mobile phones”. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware. ACM. 2005, pp. 63–70.

32

http://developer.amd.com/tools-and-sdks/archive/legacy-cpu-gpu-tools/the-compressonator
http://developer.amd.com/tools-and-sdks/archive/legacy-cpu-gpu-tools/the-compressonator
https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
https://www.opengl.org/registry/specs/ARB/texture_compression_bptc.txt
https://github.com/ARM-software/astc-encoder
http://www.sjbrown.co.uk/2006/01/19/dxt-compression-techniques
http://www.sjbrown.co.uk/2006/01/19/dxt-compression-techniques
https://code.google.com/p/libsquish
http://code.google.com/p/nvidia-texture-tools
http://code.google.com/p/nvidia-texture-tools
https://github.com/ARM-software/astc-encoder/raw/5d545016573317fefd6cebd77694d6123cd82b94/Documentation/ASTC%20Specification%201.0.pdf
https://github.com/ARM-software/astc-encoder/raw/5d545016573317fefd6cebd77694d6123cd82b94/Documentation/ASTC%20Specification%201.0.pdf
https://github.com/ARM-software/astc-encoder/raw/5d545016573317fefd6cebd77694d6123cd82b94/Documentation/ASTC%20Specification%201.0.pdf
https://software.intel.com/en-us/articles/fast-ispc-texture-compressor-update
https://software.intel.com/en-us/articles/fast-ispc-texture-compressor-update
http://r0k.us/graphics/kodak
https://msdn.microsoft.com/en-us/library/windows/desktop/hh308955(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh308955(v=vs.85).aspx

[SP07] J. Ström and M. Pettersson. “ETC 2: texture compression using invalid combinations”. In: Graphics
Hardware. 2007, pp. 49–54.

[Uli10] P. Uličiansky. Extreme DXT Compression. Cauldron, Ltd, 2010. url: http://www.cauldron.sk/
files/extreme_dxt_compression.pdf.

[Wav06] J. M. P. v. Waveren. “Real-time DXT compression”. In: Intel Software Network (2006).
[WC07] J. M. P. v. Waveren and I. Castaño. “Real-time YCoCg-DXT compression”. In: nVidia Report,

Sep 14 (2007).
[WSB03] Z. Wang, E. P. Simoncelli, and A. C. Bovik. “Multiscale structural similarity for image quality

assessment”. In: Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh
Asilomar Conference on. Vol. 2. Ieee. 2003, pp. 1398–1402.

33

http://www.cauldron.sk/files/extreme_dxt_compression.pdf
http://www.cauldron.sk/files/extreme_dxt_compression.pdf

	Abstract
	Abstract
	Acknowledgements
	Contents
	Introduction
	Background
	Problem
	Limitations

	Previous Work
	Texture Compression Formats
	Encoders and Performance

	Texture Compression
	Color Theory
	Texture Mapping
	Compressing Textures
	Fixed Rate and Block Division
	Block Definitions

	Adaptive Scalable Texture Compression
	Block sizing
	Block encoding
	Endpoint Modes
	Partitions
	Dual Planes
	Bounded Integer Sequence Encoding

	Encoding Algorithms
	Dominant Axis
	Selecting Endpoints and Interpolation Weights
	Partitioning

	Implementation
	Algorithm Pseudocode
	Fixed Block Size
	Heuristics
	Endpoint Selection
	Weight Selection
	Partitioning
	Quantization
	Bounded Integer Sequence Encoding

	Results
	Comparison with Formats and Encoders
	Quality Comparisons
	Peak Signal-to-Noise Ratio
	Results

	Performance Benchmarks
	Hardware
	Compiler
	Results

	Problematic Blocks

	Discussion
	Quality Evaluation
	Performance
	Unused ASTC features
	Power Method
	Partitioning
	Using another format

	Conclusion
	References

